Technical Report 04:06 Smoothing the wavelet periodogram using the Haar- Fisz transform

نویسندگان

  • Piotr Fryzlewicz
  • Guy P. Nason
چکیده

The wavelet periodogram is hard to smooth because of the low signal-to-noise ratio and non-stationary covariance structure. This article introduces a method for smoothing a local wavelet periodogram by applying a Haar-Fisz transform which approximately Gaussianizes and approximately stabilizes the variance of the periodogram. Consequently, smoothing the transformed periodogram can take advantage of the wide variety of existing techniques suitable for homogeneous Gaussian data. This article demonstrates the superiority of the new method over existing methods and supplies theory that proves the Gaussianizing, variance stabilizing and decorrelation properties of the Haar-Fisz transform.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Denoising the wavelet periodogram using the Haar- Fisz transform

The wavelet periodogram is hard to smooth because of the low signal-to-noise ratio and non-stationary covariance structure. This article introduces a method for denoising a local wavelet periodogram by applying a Haar-Fisz transform which Gaussianises and stabilizes the variance of the periodogram. Consequently the transformed periodogram is easier to smooth. This article demonstrates the super...

متن کامل

Haar-Fisz estimation of evolutionary wavelet spec- tra

We propose a new “Haar-Fisz” technique for estimating the time-varying, piecewise constant local variance of a locally stationary Gaussian time series. We apply our technique to the estimation of the spectral structure in the Locally Stationary Wavelet model. Our method combines Haar wavelets and the variance stabilizing Fisz transform. The resulting estimator is mean-square consistent, rapidly...

متن کامل

Variance stabilization with DDHFm

The DDHFm package is designed to perform data-driven Haar-Fisz (DDHF) variance stabilization. The basic DDHF method itself is described in [4, 5]. The modifications to DDHF to make it work successfully for microarray (or indeed similar kinds of replicate data) are described in [10]. The basic idea of the Haar-Fisz transform is very simple. First, a Haar wavelet transform is applied to the data....

متن کامل

Empirical bias results for the data-driven Haar-Fisz transform for finite sample sizes

The data-driven Haar-Fisz (DDHF) transformation was recently developed to stabilise the variance of data with an increasing (but otherwise unknown) mean-variance relationship. This report investigates the empirical bias of the DDHF transform and compares it to the much used Box-Cox transformation, using both simulated Poisson counts and data of the deaths of coalition personnel in Iraq.

متن کامل

Bayesian Wavelet Shrinkage of the Haar-Fisz Transformed Wavelet Periodogram

It is increasingly being realised that many real world time series are not stationary and exhibit evolving second-order autocovariance or spectral structure. This article introduces a Bayesian approach for modelling the evolving wavelet spectrum of a locally stationary wavelet time series. Our new method works by combining the advantages of a Haar-Fisz transformed spectrum with a simple, but po...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004